Rieth József: Világom - Anyagvilág

Hold

TartalomjegyzékhezVilágképem <  Anyag-időszak     

A Hold mint tulajdonnév a Föld bolygó egyetlen kísérőjének (holdjának) neve. A Földtől való átlagos távolsága 384 402 kilométer, nagyjából a Föld átmérőjének 30-szorosa, más mértékegység szerint 0,002 CsE, vagy 1,3 fénymásodperc (a Nap visszaverődő fénye 1,3 másodperc alatt jut el róla a földi megfigyelőhöz). Átmérője 3476 kilométer, hozzávetőleg a Földének negyede. Ezzel a Hold a Naprendszer ötödik legnagyobb holdja a Jupiter három holdja, a Ganümédész, a Kallisztó és az Io, valamint a Szaturnusz Titán holdja után.

A felszíni nehézségi gyorsulás (és így a testek súlya) körülbelül hatoda a földinek, így a rajta járó űrhajósok a 80–90 kg-os űrruhában is könnyedén tudtak mozogni, ugrálni. A légkör hiánya miatt az égboltja teljesen fekete nappal is. Kötött keringése miatt mindig ugyanaz az oldala fordul a Föld felé, és az innenső oldalán álló holdi megfigyelő (például az Apollo űrhajósai) számára a Föld mindig ugyanott látszik állni az égen (persze bolygónk ugyanúgy fázisokat mutatva elfogy és megtelik, ahogy az a földi égen is látható a Hold esetében). A Holdról azonban a Földnek nem mindig ugyanaz az oldala látszik.

Pályaadatok

Földközel: 363 104 km (0,0024 CsE)

Földtávol: 405 696 km (0,0027 CsE)

Fél nagytengely: 384 400 km (0,0026 CsE)

Pálya kerülete: 2 413 402 km (0,016 CsE)

Pálya excentricitása: 0,0554

Szinodikus periódus: 29,530 588 nap (29 nap 12 óra 44,0 perc)

Keringési periódus: 27,321 661 d (27 nap 7 óra 43,2 perc)

Min. pályamenti sebesség: 0,968 km/s

Átl. pályamenti sebesség: 1,022 km/s

Max. pályamenti sebesség: 1,082 km/s

Inklináció: változik: 28,60° és 18,30° (5,145 396° az ekliptikával)

Felszálló csomó hossza: 125,08°

Földközel szöge: 318,15°

Anyabolygó: Föld

 

Fizikai tulajdonságok

Egyenlítői átmérő: 3476,2 km (a földi 0,273-szerese)

Poláris átmérő: 3472,0 km (a földi 0,273-szerese)

Lapultság: 0,0012

Felszín területe: 3,793·107 km² (a földi 0,074-szerese)

Tömeg: 7,347 673·1022 kg (0,0123 földi)

Átlagos sűrűség: 3,344·10³ kg/m³

Felszíni gravitáció az Egyenlítőnél: 1,622 m/s², (0,1654 g)

Szökési sebesség: 2,38 km/s

Forgási periódus: 27,321 661 nap (kötött keringés)

Tengelyferdeség: 3,60°-tól 6,69°-ig változik (1,5424° az ekliptikához)

Az északi pólus rektaszcenziója: 266,8577° (17 h 47 m 26 s)

Deklináció: 65,6411°

Albedó: 0,12

Felszíni hőm.: Felszíni min 40 K; átl. 250 K; max  396 K

Látszólagos fényesség: -12,74

Kéreg összetevők: Oxigén: 43% Szilícium: 21% Alumínium: 10% Kalcium: 9% Vas: 9% Magnézium: 5% Titán: 2% Nikkel: ,6% Nátrium: 0,3% Króm: 0,2%

                            Kálium: 0,1% Mangán: 0,1% Kén: 0,1% Foszfor: 500 ppm Szén: 100 ppm Nitrogén: 100 ppm Hidrogén: 50 pm Hélium: 20 ppm

 

Atmoszféra

Légköri nyomás: 3 · 10-13kPa

Összetevők: Hélium: 25% Neon: 25% Hidrogén: 23% Argon: 20% Metán, ammónia, szén-dioxid: nyomokban

Eredete és fejlődéstörténete

A Hold az Apollo-program során gyűjtött geológiai bizonyítékok alapján nagyrészt a Föld anyagából származik. Korábban több elmélet is létezett az égitest keletkezésére, amelyek között nem is szerepelt a végül bizonyított elképzelés.

A legkorábbinak George Darwin kiszakadás-elmélete számít, amely szerint a Naprendszer kialakulásának kezdetén a még olvadt állapotban levő Föld olyan gyorsan forgott tengelye körül, hogy egy nagy anyagcsomó szakadt ki belőle (vélhetően a mai Csendes-óceán térségéből), amely hamar gömb alakot vett fel és pályára állt a maradék anyabolygó körül. Ám ez az elmélet olyan gyors forgást feltételez, amilyen sohasem jellemezte a Földet, ráadásul a megjelölt helyszín fiatal kőzetei nem erősítik meg egy olyan geológiai esemény megtörténtét, mint a kiszakadás. Egy másik jelentős, egykori elméletnek tekinthető a befogás-elmélet, amelynek hívei szerint a Hold valahol a Naprendszer más fertályán keletkezett, pályája keresztezte a Föld keringési pályáját, majd egy közeli találkozás során a nagyobb égitest befogta a nagyobb gravitációjával. Azonban ennek a hipotézisnek a működőképességéhez igen valószínűtlen feltételek különleges együttállása kellett volna, sokkal valószínűbb, hogy egy ilyen találkozásnak ütközés, vagy a befogás ellenkezője (a Föld gravitációja más irányban parittyázta volna messze el a közeledő Holdat) lett volna a vége. A harmadik elmélet a két égitest párhuzamos kifejlődéséről szólt. Eszerint a Nap körüli akkréciós korongban egymás mellett két kis bolygócsíra fejlődött a korong poranyagában és kissé aszimmetrikus ikerbolygót alkottak. Ám ez az elmélet a két bolygótest anyagösszetételének különbözőségén bukott meg (a Hold kőzeteiben kevés a víz és a vas). Mindhárom elmélet legnagyobb buktatója azonban az volt, hogy nem adott magyarázatot a Föld–Hold rendszerben meglévő impulzusmomentum kérdésére.

A végül bizonyított és ma elfogadott keletkezés-történeti elképzelés szerint, valamikor a Naprendszer kialakulását követő 30-50 millió (de legkésőbb 100 millió) éven belül, nagyjából 4,527 ± 0,01 milliárd évvel ezelőtt egy hatalmas bolygóközi ütközés történt. Ebben a formálódó ős-Föld és egy Mars méretű bolygócsíra, melyet Theiának neveztek el, összeütközött, és az ütközés által kilökődött anyag állt össze előbb gyűrűvé, majd egy gömb alakú bolygótestté. Eszerint a Hold anyaga a Földből származik, ám jelentős mennyiségben lehet benne a becsapódó másik test anyagából is. A feltételezett becsapódás jól magyarázza, miért van a Holdnak méretéhez képest viszonylag kis, fémes magja, a két ütköző égitest magja ugyanis a Földön maradt, és a két köpeny könnyebb anyagának lerepülő szilánkjai képezték a Föld körüli gyűrűt. Mivel mindkét égitest megolvadt az ütközés során, részben mozgási energiájuk miatt, ezért anyaguk fajsúlya szerint rétegződött, a nehezebb elemek így a magba kerültek.

Később a két bolygótest együtt fejlődött tovább, bár a fejlődéstörténet két önálló irányt vett. A Föld légkörének, mágneses mezejének és méretének köszönhetően mások voltak a felszínformáló erők, mint kísérőjén. A Holdon a napszél és a folyamatosan a felszínre záporozó testek bombázása alakította a felszínt, mivel a kisebb test hamarabb lehűlt és a vulkáni, vagy tektonikai aktivitás már a fejlődéstörténet igen korai szakaszában leállt. Éppen ezért a Hold földtani korszakait a meghatározó becsapódásokkal jelezzük, így különböztetünk meg Nectaris-korszakot, Imbrium-korszakot, Eratoszthenészi-kort, Kopernikuszi-kort.

A becsapódások mellett a késői nagy bombázás korszakát követően, az imbriumi-korban – 3,5-3 milliárd évvel ezelőtt – a vulkanizmus is komoly szerepet játszott a felszín kialakításában. A hatalmas, több száz kilométer átmérőjű medencéket kialakító becsapódások az adott helyeken nagyon levékonyították a kérget és így a vékony, töredezett kőzetrétegen át könnyen fel tudott törni a mélyből az olvadt kőzet. A hatalmas lávafolyások bazaltfolyamai 100-200 millió év alatt feltöltötték a nagy becsapódásos medencéket és így megszülettek a holdtengerek, a mare-k. Az óriási becsapódási kráterek szélén felgyűrődött, összetöredezett kőzetlemezek pedig, miután magát a medencét és a lemezek réseit kitöltötte a láva, hegyláncokként maradtak hátra. A lávafeltörések hamar leálltak és a legutolsó is 1,2 milliárd évvel ezelőtt történhetett (összehasonlításul: a Föld ma is geológiailag aktív, vulkánkitörések nap mint nap zajlanak rajta).

Árapályjelenség

A tengerparton élők, nyaralók számára ismert jelenség a tenger vízszintjének ritmikus emelkedése, apadása. Az árapály azonban ennél sokkal bonyolultabb jelenség és nemcsak a tengerek vízszintjére hat, ám a köztudat helyesen köti a Holdhoz. A Hold gravitációs vonzásának hatására, a földfelszín Hold felé mutató részei kissé megemelkednek (a tengervíz a leginkább, mivel a folyékony testek könnyebben változtatnak alakot erőhatásra), hullámhegyet alkotnak, az előtte és mögötte 90°-ra fekvő területek pedig kissé lesüllyednek. A hullámhegyet hívjuk dagálynak, a hullámvölgyet apálynak. A jelenségben még a Nap vonzása is szerepet játszik, ám annak hatása csak mintegy 1/3-a a Holdéhoz képest. (A dagálykúp akkor a legmagasabb, amikor a Nap–Hold–Föld, ebben a sorrendben, egy egyenesen helyezkedik el és a gravitációs hatások erősítik egymást, ilyenkor az apály is alacsonyabb. Erre újholdkor kerül sor.) Az árapály a földfelszínre gyakorolt hatása mellett visszahat az egész Föld–Hold rendszerre is. A Föld forgása lassul tőle, számítások szerint 100 évente 2,9 másodperccel, amely addig fog folytatódni, amíg a Föld forgási és a Hold keringési ideje ki nem egyenlítődik. Számítások szerint ez 1,6 milliárd év múlva következik be, amikor egy nap 55 nap hosszú lesz és a Hold is ennyi idő alatt kerüli meg a Földet. Ekkor a Hold a Földnek csak egy oldaláról lesz látható és adott helyen mindig ugyanott lesz megfigyelhető az égbolton. A Föld lassuló tengelyforgása mellett az árapály hatására a Hold folyamatosan távolodik a Földtől, évente 3,8 centiméteres sebességgel.

Libráció

A Hold fázisai és librációja a Földről nézve

Köztudott, hogy a Holdnak mindig ugyanaz az oldala fordul a Föld felé. Ez azonban csak közelítőleg igaz. Az ettől való eltérést, azaz a Hold keringése során megfigyelhető billegését librációnak nevezzük. A libráció miatt a Hold felszínének kb. 59%-a bukkan elő valamikor a keringési periódus során, azaz csak 41% van mindig a túloldalon. Ha azonban mindig tökéletesen ugyanaz az oldal fordulna felénk, akkor ez az arány szinte pontosan 50-50% lenne (49,8-50,2%[3]) A Holdnál egyszerre figyelhető meg optikai (azon belül a mozgás irányát tekintve hosszúsági és szélességi), illetve fizikai libráció.

A hosszúsági librációt (a Holdnak a forgástengelye körüli himbálózását) az égitest ellipszis alakú pályája okozza. Mivel a Hold tengely körüli forgása állandó, viszont pályája ellipszis alakja miatt a keringési sebessége változó, ezért földtávolban lelassul és ekkor a nyugati oldalon mutat meg a túloldalából 7,9°-ot, földközelben pedig felgyorsul és a keleti oldalon láthatunk ugyanannyit a túloldalból.

A szélességi librációt (az egyenlítői sík dülöngélését) pedig ugyanilyen fizikai törvényszerűségek okozzák teljesen ugyanilyen módon: a Hold keringési síkja 5°-os szöget zár be az ekliptikával emiatt hol kissé felülről, hol pedig kissé alulról látunk rá.

Ezzel szemben a fizikai libráció nem látszólagos, hanem valóságos mozgás, himbálózás. Az égitest egy nagyon kis mértékű rezgő mozgást is végez egy egyensúlyi állapot körül. Ha a két égitest tömegközéppontját összekötő egyeneshez viszonyítjuk az égitestek mozgását, akkor a Hold ehhez az egyeneshez képest 0,5 szögpercnyi periodikus eltérést mutat keleti és nyugati irányban, a hossztengelye mentén.

-------------

A hold definíció szerint olyan égitest, amely valamely bolygó körül kering (ugyanakkor a definíciótól eltérően a kisbolygók körül keringő égitesteket – mint például az Ida kisbolygó körül keringő Dactylt – is hold néven szokás említeni). Fontos kritérium, hogy a bolygó és holdja alkotta rendszer tömegközéppontja, azaz a keringés központja a bolygó testének belsejébe essen. Amennyiben ez a feltétel nem teljesül, a párost kettősbolygónak nevezzük, ilyen esetben egyik sem tekinthető holdnak. A holdak többsége az anyabolygó hozzá képest aránytalanul nagy tömege miatt kötött forgású, vagyis a saját tengelye körüli forgása megegyezik a bolygó körüli keringés idejével, azaz ez a többség mindig ugyanazt a felét fordítja a bolygója felé. Az ez alóli kivételek a gázbolygók legkülső holdjai és Szaturnusz Hiperion holdja, amelynek forgási periódusát a Titán óriáshold hatása befolyásolja.

Vulkánkitörés a Jupiter Io holdján

A holdak eloszlása Nap körüli elhelyezkedésük szerint egyenetlen. A belső naprendszerben mindössze három példány kering a több mint százhetven ismert és tucatnyi holdként még meg nem erősített égitest közül (kevesebb, mint 1 %), a Föld holdja, és a Mars körül keringő Phobosz és Deimosz, ráadásul mindkettő inkább tekinthető különlegesnek, mintsem normál keletkezésű holdnak: a mi Holdunk egy óriási becsapódás miatti reakkrécióval keletkezett, míg a Mars körül keringő két objektum befogott aszteroida. Holdunk kis híján akkora méretű, hogy csaknem kettősbolygó lehetne a Földdel együtt, a rendszer közös tömegközéppontja alig a Föld kérge alatt található, éppen hogy a bolygó belsejében. A holdak igazi „élettere” a külső naprendszer. A legtöbb hold – szám szerint 63 – a legnagyobb bolygó, a Jupiter körül kering, mögötte alig lemaradva következik a Szaturnusz 61 természetes kísérővel.

A Naprendszerben többféle osztályozás is létezik a holdakra. Keringésük tekintetében normál és retrográd keringésű holdakat különböztetünk meg. Keletkezésük helye szerint az adott bolygó körül keletkezett holdakat és befogott aszteroidákat különböztetünk meg. Előbbiek általában nagyobb méretűek, közel körpályán keringenek, normál keringési irányúak és nagy valószínűséggel a Naprendszer akkréciós korongjának ősi anyagából keletkeztek. Utóbbiak valószínűleg szintén ebből az anyagból keletkeztek, ám valahol egészen máshol (jellemzően valamelyik aszteroida-övben, esetleg az Oort-felhőben) és valamilyen ütközés vagy gravitációs perturbáció folytán kerültek közel egy-egy bolygóhoz, amelyek hozzájuk képest hatalmas tömegvonzása befogta és más pályára állította őket. Ezen égitestek pályája általában elnyúlt ellipszis, esetenként a bolygó egyenlítői síkjával szöget bezáró, és több esetben retrográd irányú is. Méretük szerint megkülönböztetünk óriásholdakat, közepes holdakat és apró holdakat.

A holdak között is van lehetséges jelölt, amelyen az élet kifejlődhet(ett), elsődlegesen a jégkéreg alatti óceánt is tartalmazó Europé, de a Kallisztót is esélyesnek tartják a tudósok, mivel ennek a holdnak is vízóceán lehet a jégfelszíne alatt. Az óriási gázbolygók és kis holdjaik között feszülő hatalmas árapály-erők miatt a legaktívabb naprendszerbeli vulkáni tevékenység is ezeket a holdakat jellemzi. A Jupiter Io holdja a vulkánilag legaktívabb égitest az egész Naprendszerben, de több holdon is megfigyelhetők gejzírek.

TartalomjegyzékhezVilágképem <  Anyag-időszak     

----------------

http://hu.wikipedia.org/wiki/Hold

http://hu.wikipedia.org/wiki/Naprendszer